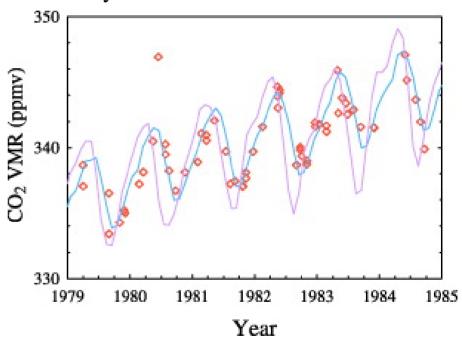
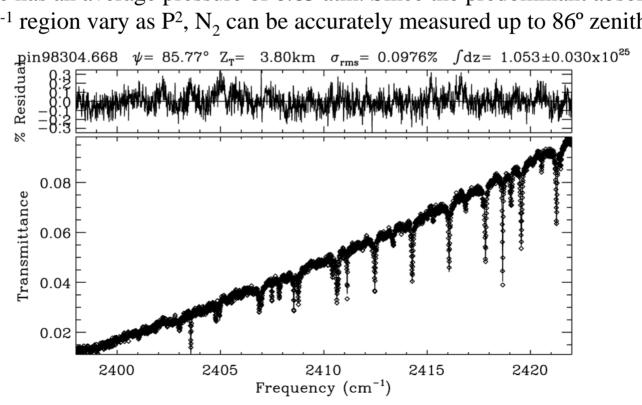
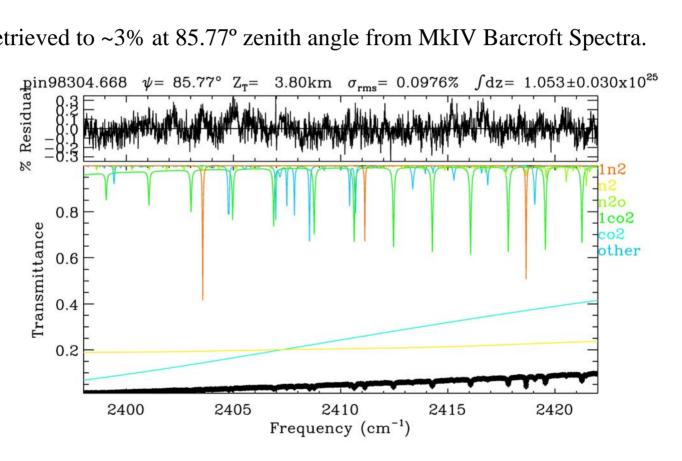

Geoffrey Toon, Jean-Francois Blavier, and Bhaswar Sen Jet Propulsion Laboratory, California Institute of Technology



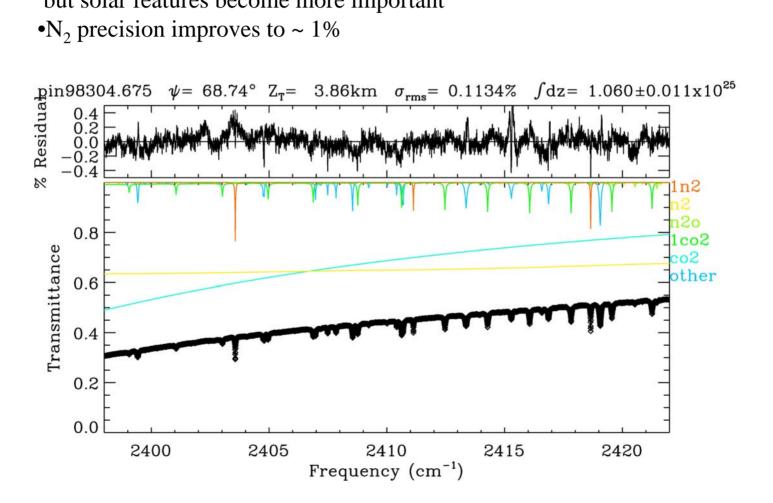
- •Atmospheric CO_2 has a long lifetime, therefore the impacts of sinks on its atmospheric abundance are very subtle (typically < 1%).
- •For atmospheric CO₂ measurements to be useful in understanding the carbon cycle, they must therefore be very accurate.


Yang et al. [2002] used Kitt Peak FTIR spectra to show that in the near-IR, CO_2 could be measured to ~0.5% precision by use of the CO_2/O_2 ratio (right).

But most of the existing NDSC instruments operate in the mid-IR, where there are no suitable O₂ lines.

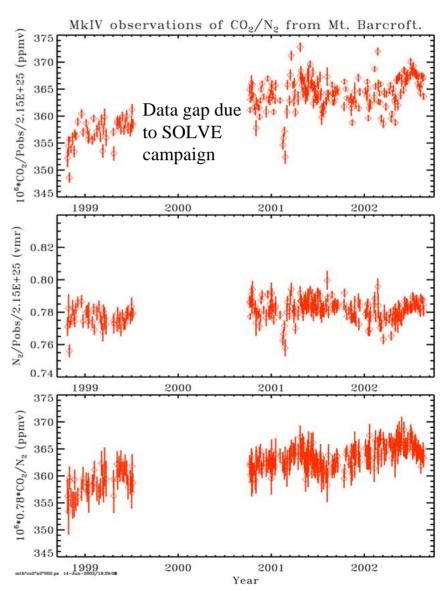

To assess the precision that CO₂ can be measured in the mid-IR, we have analyzed ground-based spectra measured by the JPL MkIV interferometer.

- •To accurately retrieve the tropospheric CO_2 vmr, it is helpful to simultaneously retrieve a reference gas with an accurately-known vmr profile (i.e. N_2). Many systematic errors that are common to CO_2 and N_2 (e.g. surface pressure, zenith angle, ILS, zero offsets, etc.) will partially cancel in the CO_2/N_2 ratio.
- •MkIV instrument has access to the N_2 quadrupole lines ~2400 cm⁻¹ (no NDSC filters).
- •Barcroft site has an average pressure of 0.65 atm. Since the predominant absorptions in the 2400 cm⁻¹ region vary as P^2 , N_2 can be accurately measured up to 86° zenith angle.



2400 cm⁻¹ region also contain absorption from CO₂, N₂O, H₂O (weak) and solar features. Continuum absorptions also arise from the N_2 CIA and the far-wings of the v_3 CO₂ lines.

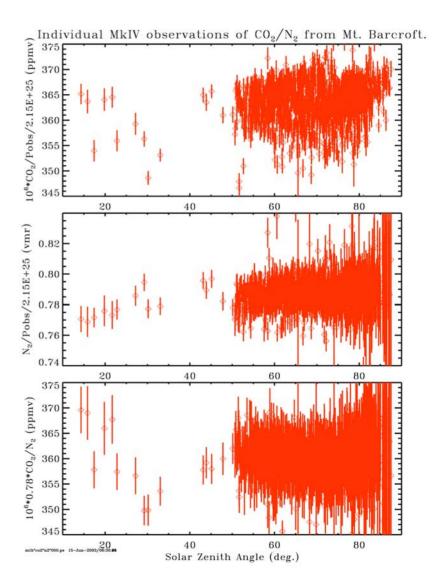
 N_2 can be retrieved to ~3% at 85.77° zenith angle from MkIV Barcroft Spectra.


- •At lower zenith angles, the continuum absorption diminishes, but solar features become more important

Upper panel shows the daily average retrieved CO₂ column amounts divided by surface pressure (Pobs), and 2.15E+25 to express them as ppmv.

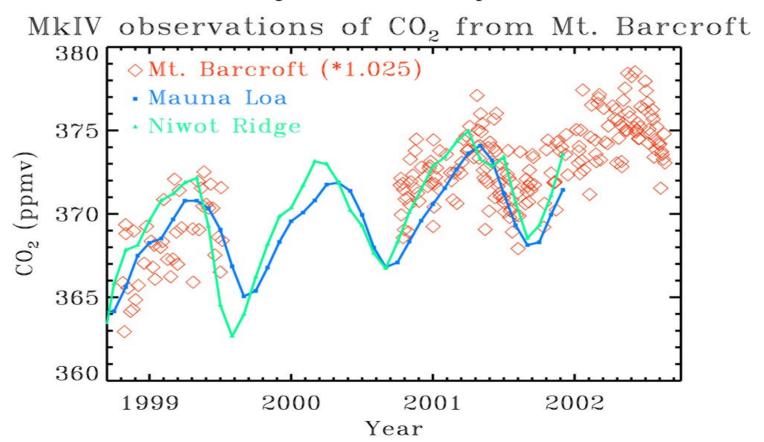
Middle panel shows the retrieved N_2 column amounts, divided by Pobs and by 2.15E+25. Departures from 0.78 are due to errors (Pobs, pointing, ILS, temperature, zero-level offset, etc.)

Lower panel shows $0.78*CO_2/N_2$. Although the error bars are larger than those of CO_2 (due to the N_2), the scatter is reduced, due to cancellation of systematic error terms.


Airmass-dependence of individual CO₂, N₂ observations

Examining the airmass dependence of the retrieved CO₂ and N₂ tests for the presence of systematic errors

CO₂ error bars are virtually independent of airmass, due to the use of a large range of CO₂ line strengths


N₂ error bars increase rapidly for SZA>85 deg due to 2400 cm⁻¹ region becoming blacked out by continuum absorption.

No discernable systematic airmassdependence (good).

Daily mean CO₂ observations from Mt. Barcroft

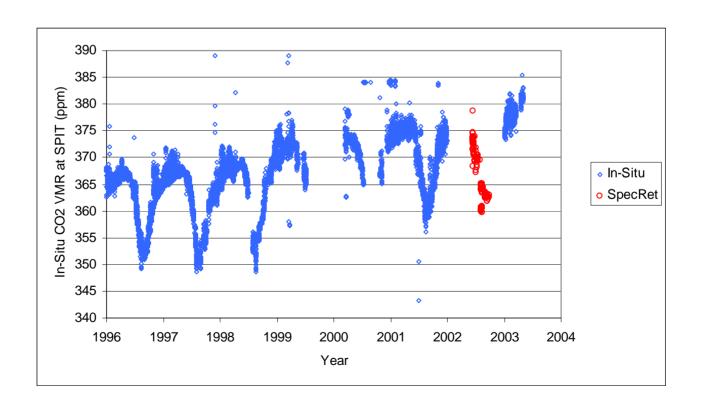
- •MkIV data was scaled by 1.025 to better match in situ data (spectroscopic error ?)
- •Barcroft data show seasonal cycle that is in phase with surface in situ observations from Mauna Loa and Niwot Ridge, but smaller in amplitude (~1%).

MkIV CO₂/N₂ observations - Conclusions

Mid-IR MkIV spectra have demonstrated a CO₂ precision ~2 ppm (~0.5%) and probably better since some of the remaining CO₂ variability is undoubtedly real.

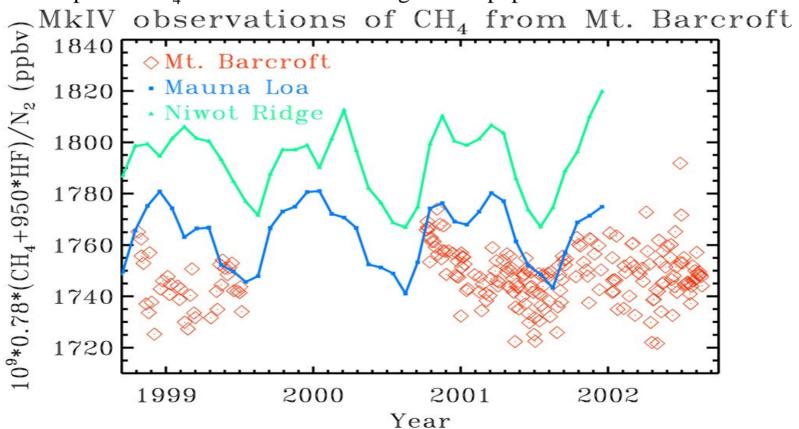
Agreement with in situ data is poorer than NIR measurements of Yang et al. [2002].

The remote MkIV CO₂ observations sample much higher in the atmosphere than surface in situ measurements (due to their column-averaging nature, and due to the fact that Mt Barcroft is higher than Mauna Loa or Niwot Ridge). This may help explain why the MkIV seasonal cycle is smaller than those seen at the surface.


Ratioing by N_2 helps cancel systematic errors, improving accuracy, but degrades precision by adding noise from the N_2 retrievals (only 3 suitable N_2 lines).

To improve precision of CO₂ retrievals requires either:

- ratioing by a reference gas with more absorption lines, e.g. O₂ in the NIR
- exceptional control over instrumental systematic errors allowing direct use of CO₂ columns without ratioing.


NIR CO₂ observations from Spitsbergen

Analyzed by Zhonghua Yang using spectra provided by Justus Notholt Used the $6220~\rm cm^{-1}~\rm CO_2$ band and the $7900~\rm cm^{-1}~\rm O_2$ band Seasonal variation of $\rm CO_2$ at $79^{\circ}\rm N$ is ~5%, much larger than mid-latitudes.

Daily mean CH₄ observations from Mt. Barcroft

Used same spectra as for CO₂ Followed same procedure as Washenfelder et al. to correct for stratospheric CH₄ variations due to changes in tropopause altitude.

N₂, CO₂ and CH₄ windows used in analyses

Window	Mean_Col	Std_Err	χ^2/N
co2_2482	1.0126	0.0009	0.8549
co2_2486	0.9725	0.0008	1.2176
co2_2626	1.0177	0.0003	0.7190
co2_3161	0.9877	0.0006	0.5473
co2_3204	0.9871	0.0003	0.5819
co2_3315	0.9963	0.0003	0.5906
co2_4879	1.0263	0.0010	0.5592
co2_4883	0.9783	0.0009	0.6220
co2_4885	0.9610	0.0006	0.4393
co2_4886	1.0118	0.0007	0.4210
co2_4887	1.0009	0.0007	0.2884
co2_4888	0.9992	0.0008	0.3898
co2_4890	0.9940	0.0008	0.3492
co2_4891	0.9809	0.0006	0.3705
co2_4892	0.9956	0.0007	0.3979
co2_4902	0.9862	0.0006	0.4354
co2_4912	1.0104	0.0009	0.2384
co2_4919	1.0493	0.0007	0.3148
co2_4922	1.0292	0.0006	0.3586

Window	Mean_Col	Std_Err	χ^2/N
n2_2403	0.9765	0.0004	0.5600
n2_2411	1.0012	0.0006	0.6853
n2_2418	1.0232	0.0004	0.5025

Window	Mean_Col	Std_Err	χ^2/N
ch4_2599	0.9841	0.0003	0.3495
ch4_2602	0.9973	0.0003	0.6069
ch4_2903	0.9859	0.0002	0.4860
ch4_4268	0.9889	0.0004	0.5386
ch4_4277	0.9956	0.0003	0.4543
ch4_4361	1.0552	0.0004	0.3139
ch4_4376	1.0069	0.0003	0.3222
ch4_4385	1.0009	0.0003	0.3675
ch4_4420	0.9957	0.0006	0.2515
ch4_4424	1.0046	0.0005	0.3666
ch4_4469	0.9945	0.0003	0.6660
ch4_4470	0.9922	0.0005	0.4408
ch4_4471	0.9904	0.0007	0.3599
ch4_4489	1.0031	0.0003	0.3071
ch4_4500	1.0172	0.0003	0.4026
ch4_4511	1.0137	0.0004	0.2823
ch4_4522	1.0207	0.0003	0.5124
ch4_4567	0.9769	0.0003	0.4903
ch4_4578	1.0116	0.0006	0.2217
ch4_4602	0.9889	0.0006	0.5023